Learning cost-sensitive active classifiers
نویسندگان
چکیده
Most classification algorithms are “passive”, in that they assign a class label to each instance based only on the description given, even if that description is incomplete. By contrast, an active classifier can — at some cost — obtain the values of some unspecified attributes, before deciding upon a class label. This can be useful, for instance, when deciding whether to gather information relevant to a medical procedure or experiment. The expected utility of using an active classifier depends on both the cost required to obtain the values of additional attributes and the penalty incurred if the classifier outputs the wrong classification. This paper analyzes the problem of learning optimal active classifiers, using a variant of the probably-approximately-correct (PAC) model. After defining the framework, we show that this task can be achieved efficiently when the active classifier is allowed to perform only (at most) a constant number of tests. We then show that, in more general environments, this task of learning optimal active classifiers is often intractable.
منابع مشابه
Thresholding for Making Classifiers Cost-sensitive
In this paper we propose a very simple, yet general and effective method to make any cost-insensitive classifiers (that can produce probability estimates) cost-sensitive. The method, called Thresholding, selects a proper threshold from training instances according to the misclassification cost. Similar to other cost-sensitive meta-learning methods, Thresholding can convert any existing (and fut...
متن کاملCost-Sensitive Learning for Confidential Access Control
It is common to control access to critical information based on the need-to-know principle; The requests for access are authorized only if the content of the requested information is relevant to the requester’s project. We formulate such a dichotomous decision in a machine learning framework. Although the cost for misclassifying examples should be differentiated according to their importance, t...
متن کاملCost-Sensitive Reference Pair Encoding for Multi-Label Learning
We propose a novel cost-sensitive multi-label classification algorithm called cost-sensitive random pair encoding (CSRPE). CSRPE reduces the costsensitive multi-label classification problem to many cost-sensitive binary classification problems through the label powerset approach followed by the classic oneversus-one decomposition. While such a näıve reduction results in exponentiallymany classi...
متن کاملCost-Sensitive Convolution based Neural Networks for Imbalanced Time-Series Classification
Some deep convolutional neural networks were proposed for time-series classification and class imbalanced problems. However, those models performed degraded and even failed to recognize the minority class of an imbalanced temporal sequences dataset. Minority samples would bring troubles for temporal deep learning classifiers due to the equal treatments of majority and minority class. Until rece...
متن کاملCMDTL1 : Combining Multiple Classifiers into a Cost-Sensitive Decision Tree
For many real-life applications, such as medical diagnosis, cost of a decision is an important practical criterion which can not be ignored. The state-of-the-art C4.5 algorithm for inductive learning was not developed with this criterion in mind. However, some well-developed approaches exist that induce decision tree, giving importance to the cost criterion. This paper presents a general framew...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artif. Intell.
دوره 139 شماره
صفحات -
تاریخ انتشار 2002